

EST Tool Steel Pvt Ltd.

(EST-Magicut Venture) Hercules Estate, Ashok Nagar, Level 1, Bank Of Baroda Compound, A.C.Road, Kandivali (East), Mumbai – 400 101, India. Tel: +91 22 2884 6441 Fax: +91 22 2884 7014 Email: info@esttoolsteel.com | Website: www.esttoolsteel.com

www.esttoolsteel.com

A. A. C.

ES7

一目生为寺

Tool & Die Materials

Introduction

Zhejiang East Tool & Die Co. Ltd, "**East Tool**" is one of the most prominent Tool & Die Steel manufacturer of special steel in China. **EST Tool Steel Pvt. Ltd.** is an alliance of "**East Tool**" & "**Magicut**" a prominent tool manufacturer of India. EST is managed under their great auspices. Their impressive reputation is only suggestive of the service level EST is committed to achieve but nonetheless inspired to cross. We operate in a highly client centric environment where each opportunity of service is perceived as an opportunity to achieve benchmarks of excellence.

East Tool has exports to 45 countries making it the one of the largest exporter of special steel (particularly in heavy die blocks, milled and ground bars, flat bars and sheets of Tool & Die Steel). It has established offices in America and Germany, strategically located points of sale and Warehouses in India, Turkey, South Korea, Australia and Brazil.

Adhering to the service philosophy of "creating value for the customers" products stamped with EST are significant of the standards of research, development and high quality the company has sworn its allegiance to.

East Tool has established a successful long-term collaborative relationship with scientific research institutes and industrial associations like China Iron & Steel Research Institute, Shanghai JiaoTong University and Zhejiang University. It will be in the fitness of things to state that East Tool has successfully and independently researched and developed high-tech product bagging 10 exclusive patents. East Tool is a permanent member of the China Special Steel Enterprises Association as also being part of the Zhejiang Province hi-tech enterprise earning it the reputation of being amongst the most famous tool & die material companies in China.

East Tool's major manufacturing bases are located in Zhejiang (Jinyun) and Chongqing (Changshou & Zhongxian) with an annual production capacity of 100,000 tons.

The manufacturing bases have the advantage of advanced technology and modern equipments like 25-ton electric arc furnaces (EAF), 25-ton refining furnaces (LF), 25-ton vacuum furnaces (VD/VOD), electro slag remelting (ESR), hydraulic press machine, precision forging machine (GFM), a varied range of electro-hydraulic hammers and rolling mill machines such as 250, 350, 550 and 850 rolling mills, wire drawing machine, straightening machines, peeling machines, laser cutting machines, lathe, milling machines and various other large-scale machining & processing equipments.

Testing and inspection equipments employed at the bases include direct reading spectrometer , hand-held spectrometer, metallographic microscope, impact testing machine, tensile testing machine, and ultrasonic flaw detector.

State of the art services at the manufacturing bases include pre-hardening, vacuum heat treatment, ion coating, surface nitriding.

East Tool's is mainly involved in the production of high speed steel, cold work steel, plastic mould steel, stainless steel and alloy steel and supply square, round and flat bars, steel sheet, steel strip, heavy die block, tools blanks and other shapes. Additionally, it tailors products to suit customers having special requirements.

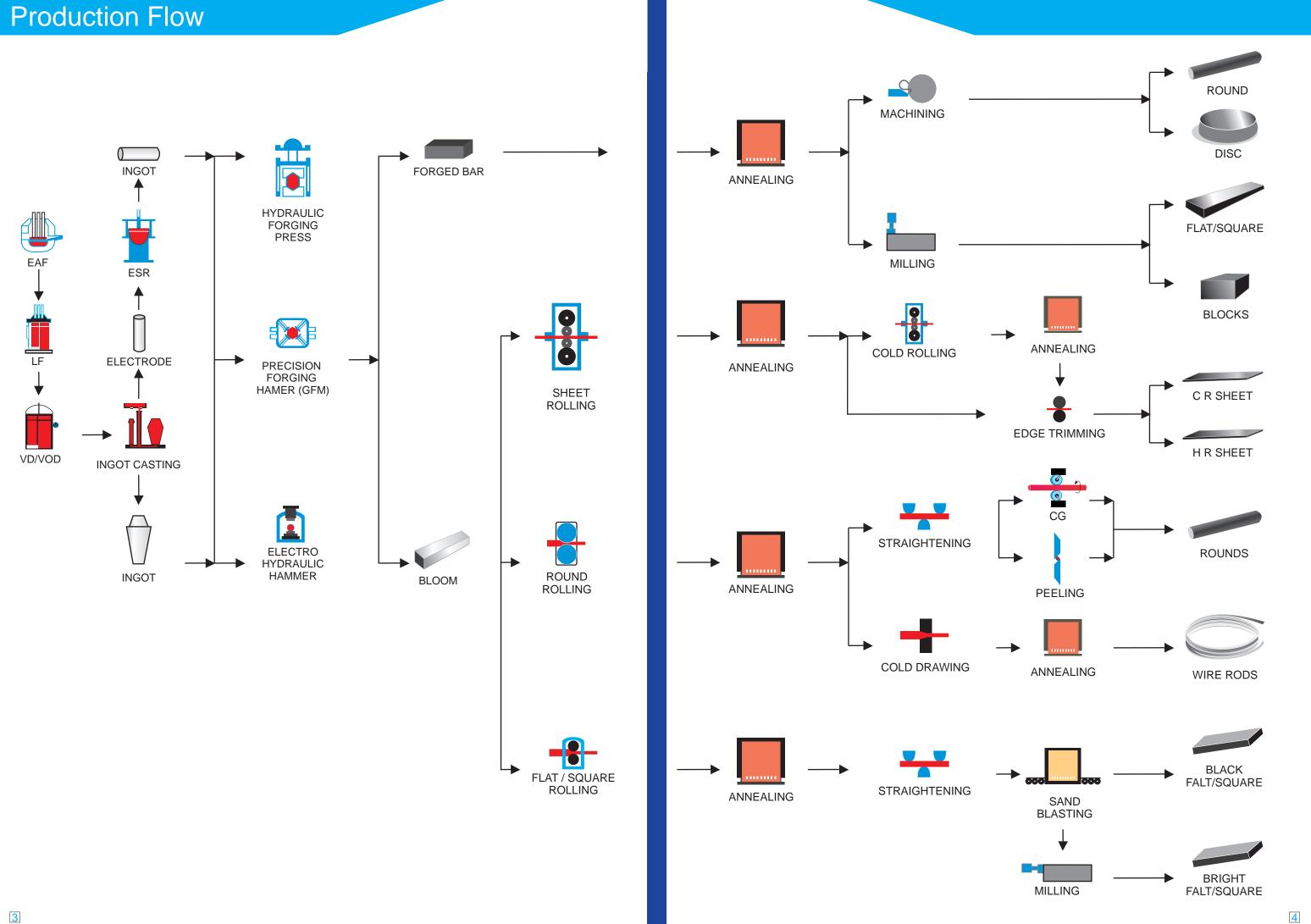
Clients, erstwhile and existing, bear testimony to our pledge to dependable and consistent quality services.

EST pursues sustainable development through innovation and creativity to realize the goal of becoming the dominating supplier of Tool & Die materials.

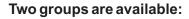
، Our Business is about Quality, YES. But it's also about Service and Customer Relationships.

OUR STRENGTHS

- · Ability to stock wide range of grades and sizes.
- Ability to turnaround stock in short time.
- Ability to customize stock as per demand.
- Ability to produce special grades / sizes as per demand.
- Ability to schedule production as per demand.
- Real time information of productions.
- Mills stock backup.


ADVANTAGE TO CUSTOMERS

- Direct supply from producer to user.
- Competitive price.
- Stability in price.
- Assured and timely supply
- Quality Assurance
- Quality consistency
- Adaptability to processing / use of material.
- Technical support from Mill.


Our aim is not to get ahead of others, but to get ahead of ourselves, to break our own records, to overcome our failures by our success, to outstrip our yesterday by our today.

66

High Speed Steel

HIGH SPEED steels have been named to show their ability to resist softening at elevated temperatures therefore maintaining a sharp cutting edge when cuts are heavy and speeds are high. They are the most highly alloyed of all of the tool steel types. They normally contain comparatively large amounts of tungsten or molybdenum, chromium, Cobalt and vanadium, along with carbon.

Molybdenum Types and Tungsten Types

THE MOLYBDENUM high speed tool steels contain 3.50 to 9.50% molybdenum. They characteristically contain 4.00% tungsten, and 1.00 to 5.00% vanadium. Carbon is fairly high—0.80 to 1.50%. Applications cover a wide range of cutting tools. Examples include these: twist drills, reamers, milling cutters, lathe and planer tools, cutoff knives, and insert cutter blades.

THE TUNGSTEN high speed tool steels have 12.00 to 20.00% tungsten. They also have substantial amounts of chromium and vanadium, and some have considerable amounts of cobalt. Carbon is high—0.70 to 1.50%, depending on the grade. Tooling uses include bits, drills, reamers, taps, broaches, milling cutters, hobs, punches, and dies.

Characterised by the following properties, among other things:

- Very good wear resistance
- High pressure resistance
- Great toughness

STANDARD STOCK GRADES & COMPARABLE STANDARDS

EST	GB (CHINA)	DIN	ASTM	JIS	OTHER
DF6	W6Mo5Cr4V2	1.3343	M2	SKH51	
DF6Co					
DF6M					
DF18	W18Cr4V	1.3355	T1	SHK2	
DF35	W6Mo5Cr4V2Co5	1.3243	M35	SKH55	
DF42	W2Mo9Cr4VCo8	1.3247	M42	SKH59	

STANDARD STOCK SIZES

PRODUCT	DELI	VERY C	ONDITION AND AV	AILABLE DIMENS	SIONS	
ROUND	COLD DRAWN	CENT	ERLESS GROUND	PEELED)	TURNED
DIAMETER IN MM	2.50 - 12.0		8.5 - 30.0	16 - 75		75 - 205
SQUARE	HOT ROL	LED BL	ACK	FOR	GED ALL	SIDE MILLED
SIZE IN MM	7.5 X 7.5 -	- 50.0 X	50.0	55 X 55 - 180 X 180		
FLATS	HOT ROLLED BLA	CK	HOT ROLLED, 2	EDGE MILLED	FOR	GED ALL SIDE MILLED
THICK x WIDTH IN MM	6 - 30 X 20 - 130)	13 - 80 X 1	50 - 410	9	0 - 130 X 100 - 410
SHEET	COLD	COLD ROLLED			HOT R	OLLED
THICK x WIDTH xLENGTH IN MM	1.0 - 2.5 X 600 -	500 - 2000	2.60 - 10	X 600 - 8	800 X 1500 - 2000	

OTHER GRADES AND SIZES ON REQUEST

APPLICATION		For all kind of wear resisting tools that bear vibration, Like Lathe tools, Planer tools, Drills, Taps, Reamers, Broaches, Milling cutters, Form cutters, Thread chasers, End mills, Gear cutters	Twist drills, taps, milling cutters, reamers, broaches, saws, knives, and hobs.	For complicated and accurate cutting tools for hard and high speed cutting, twist drills, taps, milling cutters, reamers, broaches, saws, knives, and thread rolling dies.	Twist drills, screw cutting tools, milling cutters, file cutter's chisels, lathe tools,
PROPERTY		Excellent combination of wear resistance, toughness and hot hardness. Superior compressive strength for deformation resistance, reducing susceptibility to denting and edge rollover.	Cobalt added M2 high speed steel in Twist drills, taps, milling which the cobalt addition provides hot cutters, reamers, broaches, hardness, The improved hot hardness saws, knives, and hobs. makes the steel suitable for machining high-strength and prehardened steels, high-hardness alloys	A premium cobalt high speed steel with very high hardness and superior hot hardness, excellent wear resistance by virtue of high heat-treated hardness, stay sharp and hard in heavy-duty and high- production cutting applications	Tungsten based HSS, Good combination Twist drills, screw cutting of toughness and red hardness. High tools, milling cutters, file resistance to wear and softening, cutter's chisels, lathe tools,
	Co	1	4.50 – 5.00	7.75 - 8.75	1
	W	5.50 – 6.70	5.50 – 6.70	1.15 - 1.85	17.25 – 18.75
z	٨	1.70 – 2.10	1.70 – 2.10	0.95 - 1.35	0.90 – 1.30
COMPOSITION	Mo	4.50 – 5.50	4.50 – 5.50	9.0 - 10.0	1
CHEMICAL	Ċ	3.75 – 4.50	3.75 – 4.50	3.50 - 4.25	3.75 – 4.50
	Mn	0.20 - 0.40	0.20 - 0.45	0.15 - 0.40	0.20 - 0.45
	Si	0.20 - 0.45	0.20 - 0.45	0.15 - 0.65	0.20 - 0.45
	С	0.86 – 0.94	0.87 – 0.95	1.05 – 1.15	0.65 – 0.75
ASTM		M2	M35	M42	T1
NIC		1.3343	1.3243	1.3247	1.3355
EST	-	DF6	DF35	DF42	DF18

High Speed Steel

planer tools, shaving too

atively easy to harden.

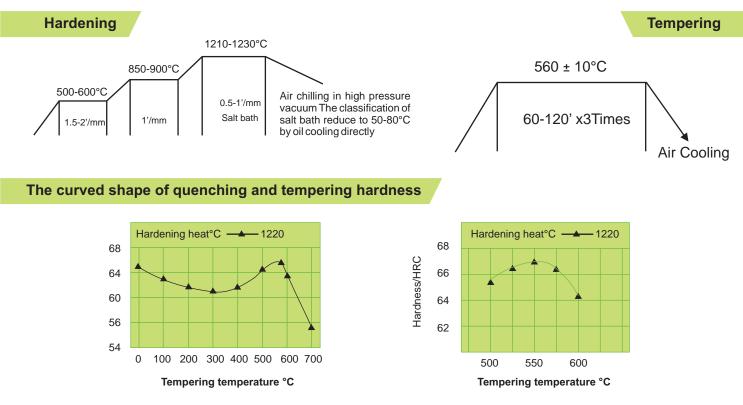
		650 °C	HRC	57		56		50		58	
		000 °C	HRC	63	3 - 66	63	4 - 66	64	6 – 68	63	3 – 65
	Tempering	550 °C	HRC	65	540 - 560 x 1 h x 3 Times 63 - 66	65	540 – 560 x 1 h x 3 Times 64 - 66	68	540 – 560 x 1 h x 3 Times 66 – 68	65	540 – 560 x 1 h x 3 Times 63 – 65
	Temp	500 °C	HRC	65	560 x 1 h x	64	560 × 1 h ×	66	60 x 1 h x	65	60 x 1 h x
		400 °C	HRC	62	540 – 5	62	540 - 5	61.5	540 - 5	62	540 - 5
		300 °C	HRC	61.5		62		60.5		63	
	Hardened			63 - 66		64-66		66-68		63-65	
HEAT TREATMENT	Quenching In			OIL / AIR Hot Bath 550 °C		OIL / AIR Hot Bath 550 °C		OIL / AIR Hot Bath 550 °C		OIL / AIR Hot Bath 550 °C	
HEAT	Hardening			1210 - 1230		1200 - 1220		1170 - 1190		1270 - 1290	
	Preheating	⊃ daic		1050		1050		1050		1050	
	Preheating	- daic		850		850		850		850	
	Warm up	ر		450 – 600		450 – 600		450 – 600		450 – 600	
	Annealed	HB		Max. 255		Max. 265		Max. 265		Max. 269	
	Soft	Allifealling °C		790 - 840		790 - 840		790 - 840		810 - 860	
Density	(g/cm3)			8.1		8.1		ω		8.7	
	ASTM			M2		M35		M42		F	
	DIN			1.3343		1.3243		1.3247		1.3355	
	EST			DF6		DF35		DF42		DF18	

Cobaltic And Abrasion Resistant High Speed Steel

Chemical Composition	С	Si	Mn	Cr	W	Мо	V	Со
(Typical analysis %)	0.90	0.38	0.35	4.10	6.00	4.80	1.80	1.40

Property:

- Basing on DF6 (M2), EAST TOOL introduced cobaltic high speed steel DF6Co, which has stronger wearlessness, better red hardness, and keep high tenacity.
- Moderate saturation degree of carbon (keep between M2 and high carbon M2C), improve the workable hardness of DF6Co, and keep the high tenacity of M2 steel.
- After adding in a right amount of cobalt, DF6Co gets better red hardness. Adding cobalt contributes to stability of carbide and maintenance of fine grain in work, improves the tempering stability of steel and keeps in state of strong wearlessness.


Application:

End mill, Slitting saws, extra hard lathe bit, machine tap, circular saw blades, etc. When processing stainless steel and titanium alloy, DF6Co has better efficiency than M2

Cutting tool	End mill, side and face cutter	Slitting saws blade	Extra hard lathe bit	Screw Tap	H.S.S. Circular Saw Blade
Workable hardness	65-66	64-66	65-67	64-66	64-66

Steel density 8.16g/cm3

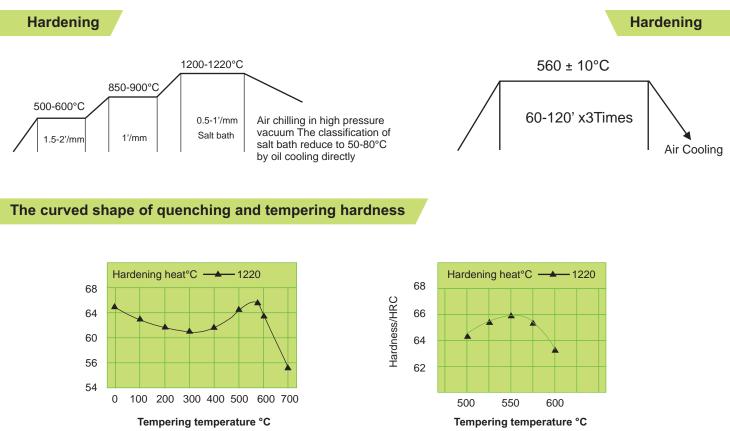
General Method of heat treatment

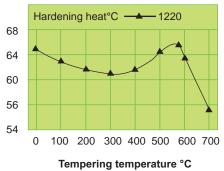
Azotization: Temperature is 40°C lower than tempering temperature, and the specific temperature Is determined by mould design. Relieving stress: Steel temperature is 15-20°C lower than tempering temperature, keep the temperature for 2 hours and then air cooling.

High Speed Steel With Strong Ductility

Chemical Composition	С	Si	Mn	Cr	W	Мо	V	Со
(Typical analysis %)	0.80	0.38	0.42	5.30	5.00	5.00	1.70	1.00

Property:


- the ability to resist tipping and rupture.
- For this reason, DF6M has strong ductility and excellent thermoplasticity.
- Adding small amount of cobalt in DF6M improve the ability to resist to hot crackability when over loading.
- tipping.


Application:

Be used for tools and dies to resist tipping and stand wear & tear better then M2

Steel density 8.16g/cm3

General Method of heat treatment

Azotization: Temperature is 40°C lower than tempering temperature, and the specific temperature Is determined by mould design. Relieving stress: Steel temperature is 15-20°C lower than tempering temperature, keep the temperature for 2 hours and then air cooling.

DF6M

• On the basis of DF6(M2), EAST TOOL developed DF6M, a high speed steel with strong ductility, which improves

• DF6M controls the chemical composition, especially the carbon content and its carbide particle is even and fine.

• Through Electro Slag Remelting (ESR) the composition of DF6M is purified and improved to resist crack and

Cold Work Steel

COLD WORK steels fall into five groups: water hardening, oil hardening, medium alloy air hardening, high carbon-high chromium and shock resisting. As their name implies, these steels are used in low to medium temperature applications. Highly wear resistant due to the high volume of carbides in the microstructure.

The high carbon and chromium content promotes deep hardening. Hardenability is accentuated by small amounts of tungsten and molybdenum. Dimensional change in hardening is extremely low.

Typical uses are long run blanking, stamping, and cold forming dies; lamination dies; thread rolling dies; trimmer dies; slitters; brick mold liners; Work Rolls.

Characterised by the following properties, among other things:

- Very good wear resistance
- High pressure resistance
- Great toughness

STANDARD STOCK GRADES & COMPARABLE STANDARDS

EST	GB (CHINA)	DIN	ASTM	JIS	OTHER
YTL122	Cr12Mo1V1	1.2379	D2	SKD11	
YTL120	Cr12	1.2080	D3	SKD1	
YTO1	9CrWMn	1.2510	O1	SKS3	
YTL7W	7Cr7WMo2V2Si				
YTL8	Cr8Mo2VSi				Bohler K340
YTL31	9Cr2MoV	1.2327			Bohler K310

STANDARD STOCK SIZES

PRODUCT	DEL	IVER	CONDITION AN	DA	VAILABLE	DIME	ENSIONS	
ROUND	COLD DRAWN	CEN	NTERLESS GROUN	D	PEELE	D	TURNED	
DIAMETER IN MM	2.50 - 12.0		8.5 - 30.0		16 - 75		TURNED 75 - 410 LL SIDE MILLED 5 - 410 X 410 GED ALL SIDE MILLED 90 - 405 X 100 - 810	
SQUARE	HOT RO	LLED	BLACK		FOR	GED	ALL SIDE MILLED	
SIZE IN MM	7.5 X 7.5	7.5 X 7.5 - 50.0 X 50.0 55 X 55 - 410 X 410						
FLATS	HOT ROLLED BL	ACK	HOT ROLLED, 2 E	EDG	GE MILLED	FOF	RGED ALL SIDE MILLED	
THICK x WIDTH IN MM	6 - 30 X 20 - 130	0	13 - 80 X 150	- 41(0		90 - 405 X 100 - 810	
SHEET	СО	LD RO	LLED			Н	OT ROLLED	
THICK x WIDTH x LENGTH IN MM	1.0 - 2.5 X 6	600 - 80	00 X 1500 - 2000		2.60 - 1	10 X 6	00 - 800 X 1500 - 2000	
DISC	400 - 600 MM D	DIA X 8	0 - 300 THICK					

OTHER GRADES AND SIZES ON REQUEST

APPLICATION		Blanking Dies, Drawing Dies, Forming Rolls, Gauges, Thread Rolling Dies, Slitters, Shear Blades, Punches, Stamping Tools	Trimming Dies, Blanking Dies for paper, Shear Blades, Woodworking Tools, Profile Rolls,	Blanking Dies, Stamping Dies, Threading Tools, Working Tools	wood chipper knives, slitter knives, scrap shears, plastic granulator knives, tire shredding knives, shear blades, planer knives,	Blanking Dies for Sheet Metal, Trimming Dies, Punches, Ejectors, Shear Blades, pneumatic chisels.	Impact resisting Tools, Chisels, Hot punching & shearing, forming and perforating dies,	Standards rolls of all diameters for cold rolling, back up rolls, straightening and work rolls			500 °C 550 °C	нкс нкс	58 56	54 44	1	55	1	51 49	1
PROPERTY		High Carbon High steel, excellent wear good toughness, High dimensional stability ace hardness	High Carbon High steel, very high wear High hardenability, Virtually tion during hardening	High resistance to cracking, excellent B machinability, small change in shape 7 during heat treatment	High wear resistance, strong w toughness, small change in shape k during heat treatment k	Shock resisting, good toughness with B high hardenability E	sting, High wear resistance, rrdenability with high	Shell Hardenable, high wear S resistance, high hardness s s		Tempering	°C 300 °C 400 °C	C HRC HRC	58	5 59 57	2 57 53	56 <u>460°C</u> 58	57.5 53	54 53	<u>55</u> 52
		Ledeburitic Chromium resistance, (hardenability, and high surfa	Ledeburitic Chromium resistance, no deformat				Shock resi high ha toughness	Shell resista			°C 200 °C	C HRC	61	62	62	57	60	57	t <u>180°C</u>
	N	I	1	0.50 - 0.70	< 1.75	1.70 – 2.20	1	1	FMENT		100 °C	HRC	63	63	64	60	62	1	64
	~	0.70 - 1.00	1	0.05 – 0.15	0.40	0.10 – 0.20	≤ 0.35	0.05 – 0.20	HEAT TREATMENT	Hardness	HRC		62-64	64 - 65	64	61	62	57	62-64
	Mo	0.70 - 1.00	1	1	1.50	1	1.30 – 1.80	0.20 - 0.35		Quenching			OIL / AIR	OIL / AIR for thickness up to 30 mm	Oil / Hot Bath 180-220 °C	OIL /AIR	Oil / Hot Bath 180-220 °C	AIR / OIL	Water
COMPOSITION	Cr	11.0 - 13.0	11.0 - 13.0	0.50 - 0.70	8.00	0.90 – 1.20	3.00 – 3.50	1.70 – 2.00						OIL / thickne 30	Hot Bath		Hot Bath	AIR	\$
	SIS	0.030	0.030	0.030	0.030	0.030	0.030	0.030		Hardening			1010 - 1050	950 - 980	780 - 820	1020 - 1050	910 - 950	940 - 980	710 – 750
CHEMICAL	Å	0.030	0.030	0.030	0.030	0.030	0.030	0.030											-
	Mn	0.20 - 0.60	0.20 - 0.60	1.00 - 1.20	0.35	0.15 – 0.45	0.20 - 0.80	0.40 - 0.60		Annealed			Max. 245	Max. 245	Max. 220	Max. 245	Max. 230	Max. 230	Max. 250
	Si	0.10 - 0.60 0.2	0.10 - 0.60 0.2	0.15 - 0.35 1.00	06.0	0.70 - 1.00 0.15	0.20 - 1.00 0.20	0.25 - 0.45 0.4		Soft Annealing °C			830 - 870	800 - 840	740 - 770	820 - 870	710 - 750	810 - 850	710 - 750
	υ	1.45 - 1.60	1.90 - 2.20	0.90 - 1.05	0.50	0.55 - 0.65	0.45 – 0.55	0.85 – 1.05	Density				7.70	7.70	7.85	7.85	7.85	7.75	7.80
ASTM		D2	D3	6	A8 Modified	S	S7	Bohler K310	ASTM				D2	D3	6	A8 Modified	S1	S7	Bohler
NID		1.2379	1.2080	1.2510	1.2631 Modified	1.2550	1.2357	1.2327	NIQ				1.2379	1.2080	1.2510	1.2631 Modified	1.2550	1.2357	1.2327
EST		YTL122	YTL120	YT01	YTL28 CHIPPER	YD11	YD17	YTL31	EST				ΥТL122	YT120	УТ01	YTL28	YD11	YD17	YTL31

Cold Work Steel

Cr 8 Wear Resistant Cold Work Steel

Chemical Composition	С	Cr	Мо	W	V	Si
(Typical analysis %)	1.00	8.50	1.70	0.50	0.90	1.00

Based on YTL122 (AISI D2), EAST TOOL introduces Cr8 high-carbon cold-work steel, it has a feature of itself in composition and performance and strength and toughness near to high-speed steels.

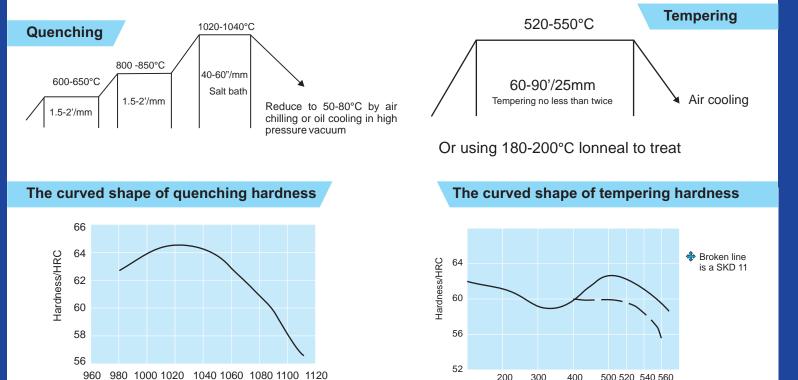
Property:

- Carbide segregation is the most important quality target of high carbon ledeburitic steel. Both YTL8 and YTL122 belong to ledeburitic steel, but the carbide of YTL8 is finer and the state of distribution is improved thus YTL8 gets the higher toughness and plasticity.
- YTL8 uses the high-heat tempering to replace the low temperature tempering, which reduces residual stresses, decreases the possibility of angle rupture and craze during the patternmaking and improves the security of linear cutting and grinding.

Unique Characteristics:

- Higher hardness (62-63 HRc) than D2 after heat treatment.
- Twice the toughness of D2 with superior wear resistance.
- Higher fatigue strength than D2.
- Smaller primary carbides than D2 protect the die from chipping and cracking.

Hardening heat (°C)


Application:

Mould that can resist grain-abrasion, mixture abrasion and angle of rupture.

- Mechanical blade (Cold shears), Thread rolling Dies, Drawing die
- Forming dies, Piercing punch, Dies for cold forging

Steel Density 7.84 g/cm3

General method of heat treatment

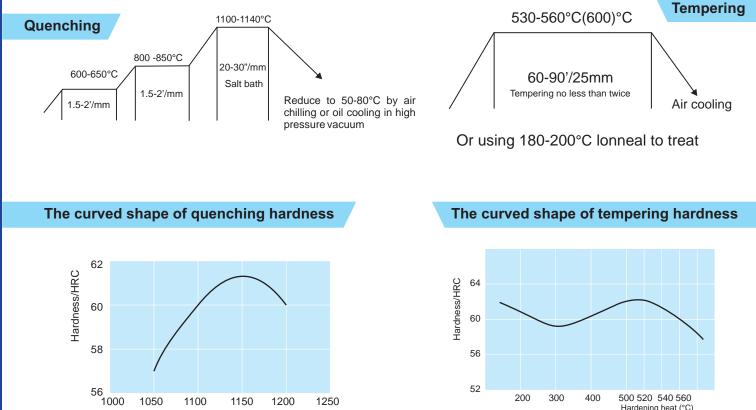
Hardening heat (°C)

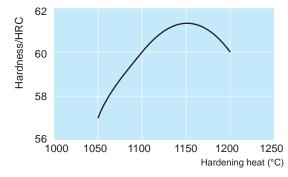
Cold Work Steel With Obdurability

Chemical Composition	С	Cr	Мо	W	V	Si
(Typical analysis %)	0.74	7.30	1.70	0.50	1.90	1.10

Property:

YTL7W is the second generation of LD Steel introduced by EAST TOOL


- YTL7W has the same high obdurability as LD steel, and YTL7W is good at anti-tipping and anti-rupture. • Just like LD steel, YTL7W has the same hardness that is greater than or equal to HRC60 during the heat treatment YTL7W has the better wearlessness.
- Just like LD steel, YTL7W can be used in the high-heat tempering and has few residual stresses. Besides YTL7W improves ability to resist angle rupture and craze
- YTL7W has better hot hardness than LD steel and is more suitable to manufacture thin-edge mechanical blade because YTL7W uses tungsten to replace some molybdenum.


Application:

- Be used to produce drawing die with high ductility toughness, especially slender die.
- Cold-forging and cold-forming mould with strong pressive strength
- Cold shears mechanical blade.

Steel density 7.74g/cm3

General method of heat treatment

YTL7W

12

Hot Work Steel

HOT WORK steels, as their name implies, are used where operating temperatures of the tool may reach levels where resistance to softening, heat checking and shock is important. It has high heat resistance and medium wear resistance, Distortion in hardening is low.

This group of steels is excellent for such uses as die-casting dies, extrusion dies, plastic molding dies, hot forging dies, hot gripper and heading dies, hot mandrels, hot work punches, and hot shear knives.

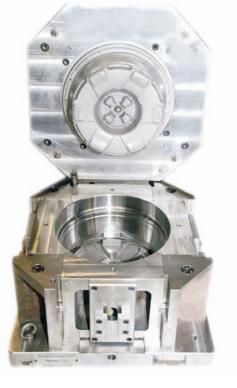
Characterised by the following properties, among other things:

- Resistance to temperingResistance to thermal shocks
- High-temperature strength
- High-temperature toughnessHigh-temperature wear resistance
- High-temperature corrosion resistance

STANDARD STOCK GRADES & COMPARABLE STANDARDS

EST	GB (CHINA)	DIN	ASTM	JIS
YTR5	4Cr5MoSiV1	1.2344	H13	SKD61
YTR18				
YTR50	4Cr5MoSiV	1.2343	H11	SKD6
YTH12	4Cr5MoWSiV	1.2606	H12	SKD62
YTR65	4Cr3Mo3SiV	1.2365	H10	SKD7
YTR2	3Cr2W8V	1.2581	H21	SKD5
YTR3A				

STANDARD STOCK SIZES


PRODUCT	DEL	IVERY CONDITION AND AV	AILABLE	DIMENSIC	DNS		
ROUND	COLD DRAWN	CENTERLESS GROUND	PEE	LED	TURNED		
DIAMETER IN MM	2.50 - 12.0	8.5 - 30.0	· 75	75 - 610			
SQUARE	HOT ROL	LED BLACK	FC	ORGED AL	LL SIDE MILLED		
SIZE IN MM	7.5 X 7.5	- 50.0 X 50.0		55 X 55	55 X 55 - 510 X 510		
FLATS	HOT ROLLED BLACK	HOT ROLLED, 2 EDGE	MILLED	FORGE	ED ALL SIDE MILLED		
THICK x WIDTH IN MM	6 - 30 X 20 - 130	13 - 80 X 150 - 410	0	90	- 405 X 100 - 810		
DISC	400 - 800 MM DI	A X 80 - 400 THICK					

OTHER GRADES AND SIZES ON REQUEST

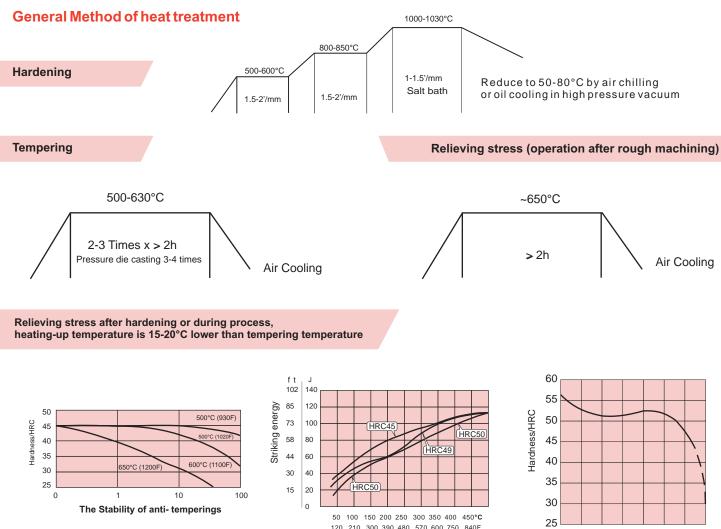
APPLICATION		Pressure die casting tools, extrusion die, forging dies, hot shear blades, stamping dies, plastic molds, Hot work mandrels, ESR H13 is great for aluminium die-casting tools and plastic mold tools requiring a very high polish.	hot punches, die casting dies, forging dies, hot shear blades, hot gripper dies, and extrusion dies.	Recommended for hot tooling applications where maximum resistance to cracking is required. Hot punches, die casting dies, forging dies, hot shear blades, hot gripper dies, extrusion dies.	Heavy metal Die-casting tools, Piercing Mandrets, Hot punches, forging dies, hot shear blades,	Recommended for difficult hot work tooling applications such as brass extrusion, brass die casting dies, hot punches, forging die inserts.	Die forging, die casting, extrusion, glass processing, Mandrels, Die holders			600 °C	HRC	48	47	46	46	51	39	36
APPLIC		Pressure die casting extrusion die, forging dies shear blades, stamping plastic molds, Hot work man ESR H13 is great for alum die-casting tools and plastic tools requiring a very high p	hot punches, die casting die forging dies, hot shear blades, h gripper dies, and extrusion dies.	Recommended for hot the applications where maximations where maximations where maximations are applications of casting forging diss, hot shear blade gripper dies, extrusion dies.	Heavy metal Die-casting to Piercing Mandrels, Hot punch forging dies, hot shear blades,	Recommended for difficult work tooling applications such brass extrusion, brass die cas dies, hot punches, forging die inserts.	Die forging, die o glass processin, holders			500 °C 550 °C	RC HRC	52.5	52	52	9 49	1 52	5 43	40
~		twear resistance good thermal 113 has greater ceptionally fine ed machinability, perature tensile	act toughness. The tungsten des better temper resistance, ng, air-hardening steel that mal size change during heat Good resistance to thermal ng	excellent toughness, thermal shock when rvice, minimal size eatment.	ance to softening at elevated very resistant to thermal , and can be water cooled	e to softening at uld not be water ie tool includes al water cooling. voided	good resistance mperature. good ck and thermal insional changes		Tempering	400 °C 500	нес нес	54 56	55	54.5 56	51.5 50	49.5 51	49 45	47 43
PROPERTY		High hardenability, excellent wear resistance and hot toughness. has good thermal shock resistance, (ESR) H13 has greater homogeneity and an exceptionally fine structure, resulting in improved machinability, attructure, resulting and high temperature tensile strength.		High hardenability, excellent good resistance to thermal water cooled in service, change during heat treatment.	ing inte	Exhibits excellent resistance to softening at elevated temperature. Should not be water cooled in service unless the tool includes a continuous flow of internal water cooling. Thermal shock should be avoided	High impact toughness and good resistance to softening at elevated temperature. good resistance to thermal shock and thermal fatigue cracking, small dimensional changes during hardening.			300 °C	HRC	51.5	23	52.5	51	49.5	52	202
		High hard and hot shock re homogen structure, polishabi	Excellent impact content provides deep-hardening, exhibits minimal treatment. Goo fatigue cracking	High he good re water c change (Excellent res temperature. fatigue crack in service	Exhibits elevated cooled in a continu Thermal	High imp to softer resistanc fatigue c during h			200 °C	HRC	52	52	52	50.5	51	54	5
	W	,	1.20 – 1.40	1		8.50 - 9.50	Ni 1.50 – 1.80	IMENT		100 °C	HRC	54	23	23	52	52	57	2 2 2
	N	0.85 – 1.15	0.15 – 0.40	0.30 – 0.50	0.40 - 70	0.30 - 0.50	0.05 – 0.15	HEAT TREATMENT	Hardness	Artier quenching HRC		56	52-56	52-56	52	52	58	БG
	Mo	1.20 – 1.50	1.30 – 1.60	1.10 – 1.50	2.50 – 3.00	I	0.35 - 0.55		hing			OIL / AIR	OIL / AIR	OIL / AIR	OIL / AIR	OIL	AIR / OIL	
CHEMICAL COMPOSITION	Ċ	4.80 – 5.50	5.00 – 5.60	4.80 – 5.50	2.70 – 3.20	2.50 – 3.20	0.80 – 1.20		-									
ICAL COM	S≤	0.030	0.030	0.030	0.030	0.030	0.030		Hardening	LOUL		1010 - 1040	1020 - 1050	1010 - 1040	1030 - 1050	1110 - 1150	OIL 830 - 870	
CHEM	Ps	0.030	0.030	0.030	0.030	0.030	0.030		Annealed	Hardness HB		Max. 235	Max. 235	Max. 235	Max. 235	Max. 240	Max. 250	<u> </u>
	Mn	0.25 – 0.50	0.30 – 0.60	0.25 – 0.50	0.15 – 0.45	0.15 – 0.45	0.60 - 0.90					Max	Max	Max	Max	Max	Max	
	Si	0.80 – 1.20 0	0.90 – 1.20 0	0.80 - 1.20 0	0.10 - 0.40 0	0.10 - 0.40 0	0.10 - 0.40 0		Soft Annealing °C			760 - 800	750 - 790	760 - 790	760 - 790	790 - 830	650 - 700	
	c	0.35 – 0.42	0.32 – 0.40	0.33 – 0.41	0.28 – 0.35	0.25 – 0.35	0.50 - 0.60	Density	- (g/cms)			7.80	7.80	7.80	7.90	8.20	7.85	
ASTM		H13	H12	H H	H10	H21	L6	ASTM				H13	H12	H11	H10	H21	PT	
NIQ		1.2344	1.2606	1.2343	1.2365	1.2581	1.2714	DIN				1.2344	1.2606	1.2343	1.2365	1.2581	1.2714	
EST		YTR5	YTH12	YTR50	YTR65	YTR2	YTR6A	EST				YTR5	YTH12	YTR50	YTR65	YTR2	YTR6A	

Hot Work Steel

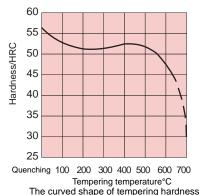
High-Grade Pressure-Casting Die Steel

Chemical Composition	С	Cr	Мо	W	V	Si	S
(Typical analysis %)	0.39	5.30	1.80	0.50	0.90	0.90	0.012

Based on YTR5(H13), EAST TOOL developed YTR18 as a high guality high grade substitute to it.


Property:

- YTR18 has excellent toughness and thermal conductivity, and is good resistant to softening during tempering.
- YTR18 has better high-temperature flexibility and ability to resist thermal fatigue.
- Processed through Electro Slag Remelting (ESR), YTR18 has excellent toughness and ductility in all directions.
- Workable hardness is HRC 46-52.


Application:

- Aluminum and Magnesium pressure-casting Die.
- Copper alloy extrusion Die.
- Also suitable for high-grade plastic moulds.

Steel density 7.86g / cm3

120 210 300 390 480 570 600 750 840F Tempering temperature°C The relation between hardness and thoughness at elevated temperatures

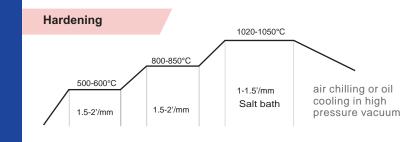
1020 oil quenching, twice tempering

High-Heat And Fatigue Resistant Forging Die Steel

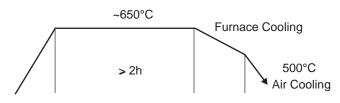
Chemical Composition	С	Si	Mn	Cr	W	Мо	V	Со
(Typical analysis %)	0.40	0.45	0.70	3.40	1.70	1.80	0.90	≤ 1.00

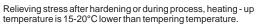
YTR3A is a kind of high-temperature HOT WORK STEEL introduced by EAST TOOL. It is Cobaltic CrMoWV Steel with medium carbon, has excellent red hardness and hot-abrasion resistance. YTR3A also has better ability to resist to thermal fatigue than AISI H21.

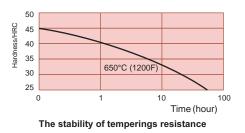
Property:


- Has better heat-durability therefore can maintain its property in an environment that surpasses 600°C
- HOT WORK STEEL.
- knit. For this reason, YTR3A can effectively resist to thermal cracking.
- Use of rapid and refined heat treatment technology improve YTR3A ability to resist to thermal cracking.
- Workable hardness is HRC46-52

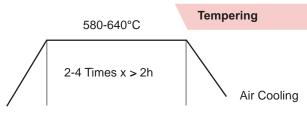
Application:

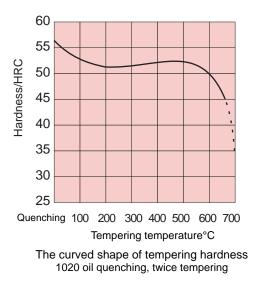

• Warm forging mold, progressive type automatic forging hot die, hot-sizing Die, etc.


Steel density 7.93 g/cm3


General Method of heat treatment

Relieving stress (after rough machining, mould ingot must be heat treatment with stress-relief)




YTR3A

Has excellent ductibility and can effectively resist to thermal cracking, which is universal disabled phenomena of

Through Electro Slag Remelting (ESR) molten steel of YTR3A is purified and the composition of YTR3A is tight

Note: Quenching temperature is not allowed to reduce to room temperature and 50-80 $^{\circ}\mathrm{C}$ is suitable. After quenching, the steel must be tempering and each tempering temperature must reduce to room temperature.

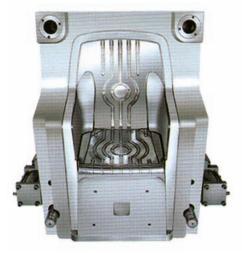
Mould Steel

MOULD STEELS typically have lower carbon content—0.36 to 0.40% and chromium and nickel are the main alloying elements. These characteristics allow these materials to be polished to an extremely high finish.

These steels are supplied in a variety of pre-hardened conditions. They are primarily used for low temperature diecasting dies and for molds to form plastics.

Characterised by the following properties, among other things:

- Wear resistancePolishability
- Machinability
- Toughness and hardness
- Thermal conductivity


STANDARD STOCK GRADES & COMPARABLE STANDARDS

EST	GB	DIN	ASTM	JIS	OTHER
YTG136	4Cr13	1.2083		SUS420	
YTG173	3Cr17Mo	1.2316			
YTJ20A	3Cr2Mo	1.2311	P20		
YTJ21	3Cr2NiMo	1.2738	P20+Ni		
YTJ80	10Ni3MnCuAl				

STANDARD STOCK SIZES

PRODUCT	DELIVERY C	CONDITION AND AVAILABLE D	DIMENSIONS				
ROUND	CENTERLESS GROUND	PEELED	TURNED				
DIAMETER IN MM	8.5 - 30.0	16 - 75	75 - 710				
SQUARE		FORGED / ALL SIDE MILLED					
SIZE IN MM		55 X 55 - 610 X 610					
FLATS	HOT ROLLED BLACK HOT ROLLED / 2 EDGE MILLED FORGED / ALL SIDE MILLE						
THICK x WIDTH IN MM	6 - 30 X 20 - 130 13 - 100 X 150 - 410 100 - 505 X 100 - 1200						

OTHER GRADES AND SIZES ON REQUEST

ET DIN ASTM COEMACLACINOSCITION 1 C Si M PC N M M 1 C Si M PC N M M 1 C Si M PC N N M <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
DIN ASTM CHEMICLACOMPOSITION 12.083 C Si Mn Ps Sr Mo V Ni 12.083 $36 - 0.42$ $$1.0$ $$1.0$ $$21.0$ $$21.0$ $$0.30$ $$12.6 - 14.50$ $$0.60$ $$0.50$ $$0.50$ 12.016 $$1.0$ $$21.0$ $$21.0$ $$21.0$ $$0.30$ $$12.6 - 14.50$ $$0.00$ $$0.50$ $$0.50$ $$0.50$ 12.311 $$1.0$ $$21.0$ $$21.0$ $$0.30$ $$0.30$ $$15.175$ $$0.80 - 1.30$ $$0.50$ $$0.50$ 12.311 $$P20$ $$0.32 - 0.45$ $$21.0$ $$0.30$ $$15175$ $$0.80 - 1.30$ $$0.50$ $$0.20 - 0.40$ 12.311 $$P20$ $$0.32 - 0.45$ $$0.20 - 0.40$ $$1.30 - 1.60$ $$0.30$ $$1.80 - 2.10$ $$0.50 - 1.20$ 12.311 $$P20$ $$0.55 - 0.45$ $$0.20 - 0.40$ $$1.30 - 1.60$ $$0.30$ $$1.80 - 2.10$ $$0.50 - 1.20$ 12.318 $$20 + 1$ $$0.50 - 1.20$	APPLICATION		molds for compact disks (CDs), medical laboratory equipment, optical lenses, and other components, which require critical surface finishes.	For Mould with s corrupt resisting for camera lens, for pressing chem aggressive compound		Large size Plastic Injection and blow moulding dies, mould frame for pressure casting dies, Heated
DIN ASTM Chemical composition 12083 C Si Mo Ps Si Mo V 12083 C 0.36 - 0.42 \$1.0 \$1.0 0.030 12.50 - 14.50 x x 12316 V 0.33 - 0.45 \$1.0 \$1.0 \$0.030 12.50 - 14.50 x x 12316 V 0.33 - 0.45 \$1.0 \$1.0 \$0.030 12.50 - 17.5 x x 12316 V 0.33 - 0.45 \$1.0 \$1.50 x x x x 12316 V 0.33 - 0.45 \$1.0 x x x x x 12311 P20 0.35 - 0.45 x x x x x x x 12311 P20 x x x x x x x x 12314 P20 x x x x x	PROPERTY		supreme polishability, good corrosion resistance, and good wear resistance. material of choice for the manufacture of plastic molding tools that require the highest lens-quality polished finishes	high cleanliness/homogeneity, powerful in resistant to rust and corrosion, good polishability, usually supplied in quenched and tempered condition with a working hardness of approximately 300 HB.	Prehardened plastic mold steel, hardness in as-supplied condition 280-320 HB that is characterized by good toughness at moderate strength level good polishability and etching ability, adequate corrosion resistance, and cost efficient machining properties.	Prehardened plastic mold steel, hardness in as-supplied condition 280-320 HB The high nickel content (1%) is specially adapted to ensure a perfect homogeneity
DIV ASTM CHEMICLACIANTOSTITION 12.00 C Si M Ps Si Mo Mo 12.001 C Si M Ps Si C Mo Mo 12.001 Si Si Si Si Si Mo Mo 12.01 Si Si Si Si Si Si Mo 12.316 Si Si Si Si Si Si Si Si 12.316 Si		N	(0.60)	≤ 1.00	1	
DIN ASTM CHAILAL COMPOSITION 12083 C Si Mn Ps Si Cr 12083 C C Si Mn Ps Si Cr 12083 C C Si Si Cr Si Cr 12083 C C Si Si Si Cr Cr 12084 C C Si Si Si Cr Cr 12085 C C Si Si Si Si Cr Cr 12316 C C Si Si Si Cr		>	≤ 0.20	1	1	I
DIN ASTM CHEMICAL COMPO \mathbf{C} \mathbf{C} \mathbf{S} \mathbf{M} \mathbf{P}^{C} \mathbf{S}^{C} 11.2083 \mathbf{C} \mathbf{S} \mathbf{M} \mathbf{P}^{C} \mathbf{S}^{C} \mathbf{S}^{C} 11.2083 \mathbf{S}^{C} <t< td=""><td></td><td>Mo</td><td></td><td>0.80 – 1.30</td><td>0.15 - 0.25</td><td>0.15 - 0.35</td></t<>		Mo		0.80 – 1.30	0.15 - 0.25	0.15 - 0.35
DIN ASTM ASTM ASTM ASTM ASTM ASTM ASTM CHAMICAL 1.2083 \mathbf{C} \mathbf{S} \mathbf{N} $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ 1.2083 $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ $\mathbf{P}^{<}$ 1.2083 $\mathbf{P}^{<}$	SITION	ŗ	12.50 – 14.50	15.5 – 17.5	1.80 – 2.10	1.80 – 2.10
DIN ASTM \mathbf{C} Si \mathbf{Mn} \mathbf{S} 1.2083 \mathbf{C} \mathbf{Si} \mathbf{Mn} \mathbf{Si} \mathbf{Mn} \mathbf{Si} 1.2083 \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Mn} \mathbf{Si} 1.2083 \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} 1.2016 \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} \mathbf{Si} 1.2316 \mathbf{Si} <	0	S≤	0.030	0.030	0.030	0.030
DIN ASTM C Si 1.2083 C Si Si 1.2083 Si Si Si 1.2084 Si Si Si 1.2083 Si Si Si 1.2016 Si Si Si 1.2316 Si Si Si 1.2311 $P20$ Si Si 1.2311 $P20$ Si Si 1.2738 $P20+Ni$ Si Si	CHEMIC	Ps	0.030	0.030	0.030	0.030
DIN ASTM C 1.2083 C C 1.2083 0.36 - 0.42 C 1.2316 C C C 1.2311 P2O C C 1.2313 P2O C C 1.2738 P2O+NI C C		Mn	≤ 1.0	≤ 1.50	1.30 – 1.60	1.30 – 1.60
DIN ASTM 1.2083 ASTM 1.2083 P 1.2316 P 1.2311 P20 1.2738 P20+Ni		Si	≤ 1.0	≤ 1.0	0.20 - 0.40	0.20 - 0.40
DIN 1.2083		U	0.36 – 0.42	0.33 – 0.45	0.35 – 0.45	0.35 - 0.45
	ASTM				P20	P20+Ni
YTG136 YTG173 YTG173 YTJ20A YTJ21	DIN			1.2316	1.2311	1.2738
	EST		YTG136	YTG173	YTJ20A	YTJ21

ks, on

45 Ř 36 33 320 HB (HRC 29-35) 88 320 HB (HRC 29-35) 800 Q HB (F -IRC 50 39 42 38 550 ° ion 280-(500 °C 52.5 **IRC** 42 17 2 HRC 52.5 46 46 9 00 U HRC 18.5 52 46 48 000 ed steel. U -IRC 53 50 47 5 000 100 °C Pre-h TREATMENT **IRC** 54 48 Pre 51 52 b HFAT quencl 54 52 52 52 After Oil , th 500-550 °C Oil , Hot Bath 180-220 °C Oil , Hot Bath 500-550 °C Oil, Hot Bath 180-220 °C inching In Hot Bath { 1000 - 1040 Hardening From °C 1000 -1050 840 – 870 840 – 870 ealed less HB Max. 235 235 235 235 Max. Мах. Max. Hardn g 750 - 800 710 - 740 710 - 740 -820 780. Soft. Density (g/cm3) 7.75 7.80 7.80 7.75 P20+Ni ASTM P20 1.2083 1.2316 1.2738 1.2311 NIC YTG136 YTG173 YTJ20A YTJ21 ST

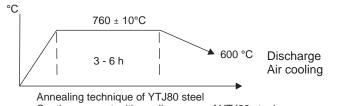
Mould Steel

High-Grade Ageing Plastic Die Steel

Chemical Composition	С	Si	Mn	Р	S	Мо	Ni	Cu	AI
(Typical analysis %)	0.15	0.22	1.80	0.011	0.004	0.30	2.95	1.00	0.90

Property:

- YTJ80 is a precipitation or age-hardened mold steel with a uniform through hardness of approximately 40 HRC.
- Good uniformity of hardness, HRC (+/-) 1-1.5
- Ageing state can be machine worked, and the layer of electro erosion machining can be removed easily.
- Stress relieving not required after machining.
- Good polish. Through Electro Slag Remelting (ESR), molten steel of YTJ80 is pure, and the composition of • YTR80 is well-distributed which gives YTJ80 better minute surface.
- Good weldability.

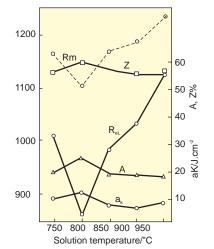

Application:

- Delicate and complicated plastic moulds.
- Specular (transparent) lens molds.
- Plastic mould to manufacture delicate ablation cross-hatching (dermatoglyph) car garnish, office supplies, etc. •

Steel density 7.98g/cm3

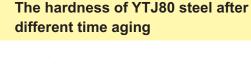
General method of heat treatment

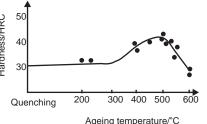
Heat treatment in advance



Continuous austenitic cooling curve of YTJ80 steel

Solution temperature influence the hardness of YTJ80 steel

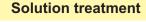

Solution temperature/°C	780	810	840	870	900	940
Hardness/HRC	30.8	32.4	33.1	32.7	33.1	31.0


Solution temperature influence the mechanical property of YTJ80 steel

Time/S Continuous austenitic cooling curve of YTG173 steel

Machining and Decarb Limits

Minimum Allowances For Machining and


Minimum	Allo	wance	Per Sid	e for Ma	achining	Prior to	o Heat T	Freatme	ent in Ind	ch	
		Ordered Width. Inches									
Ordered Thickness		Over	Over	Over	Over	Over	Over	Over	Over	Over	Over
Inches	1	∕₂ to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9
		incl.	incl.	incl.	incl.	incl.	incl.	incl.	incl.	incl.	
	А	.025	.030	.035	.040	.045	.050	.055	.060	.060	.060
0 to $\frac{1}{2}$ incl.	В	.036	.044	.056	.068	.092	.104	.120	.136	.144	.152
	А	.045	.045	.050	.055	.060	.070	.070	.075	.075	.075
Over 1/2 to 1, incl.	В	.045	.052	.064	.080	.104	.120	.136	.160	.160	.160
Over 4 to 2 incl	А	-	.065	.065	.070	.070	.075	.075	.090	.095	.100
Over 1 to 2, incl.	В	-	.065	.075	.084	.112	.124	.144	.168	.180	.180
Over 2 to 2 incl	Α	-	-	.085	.085	.085	.085	.090	.100	.100	.100
Over 2 to 3, incl.	В	-	-	.085	.102	.120	.136	.160	.180	.190	.190
Over 3 to 4, incl.	А	-	-	-	.115	.115	.115	.115	.125	.125	.125
	В	-	-	-	.115	.127	.140	.180	.190	.190	.190
	MAXIMUM DECARBURIZATION LIMITS										

Minimum Allowance Per Side for Machining Prior to Heat Treatment in Inch											
					Orde	red Wic	lth. Inch	ies			
Ordered Thickness	Over		Over	Over	Over	Over	Over	Over	Over		
Inches	2 to 3		3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9		
		incl.	incl.	incl.	incl.	incl.	incl.	incl.			
	А	.090	.090	.100	.110	.115	.125	.140	.150		
Over 1 to 2, incl.	В	.100	.108	.124	.148	.172	.200	.200	.200		
0 01 0 1	А	.120	.120	.125	.130	.135	.150	.160	.175		
Over 2 to 3, incl.	В	.120	.130	.140	.148	.172	.200	.200	.200		
Over 2 to 4 incl	А	-	.150	.150	.160	.180	.200	.210	.225		
Over 3 to 4, incl.	В	-	.150	.150	.160	.180	.200	.210	.225		
Over 4 to 5, incl.	А	-	-	.180	.180	.190	.210	.225	.250		
Over 4 to 5. Incl.	В	-	-	.180	.180	.190	.210	.225	.250		
Over 5 to 6 incl	А	-	-	-	.210	.225	.225	.250	.250		
Over 5 to 6, incl.	В	-	-	-	.210	.225	.225	.250	.250		
Over 6		-	-	-	-	.250	.250	.250	.250		
Over 0		-	-	-	-	.250	.250	.250	.250		

MAXIMUM DECARBURIZATION LIMITS

Data shown are typical. and should not be construed as maximum or minimum values for specification or for final design. Data on any particular piece of material may vary from those shown herein.

Maximum Decarburization Limits (Hot Rolled Square and Flat Bars*)

80 Percent of above allowance per side

*These allowances also applicable to Cold Drawn Bars where cold drawn sizes are available.

Minimum Allowances For Machining and Maximum Decarburization Limits (Forged Square and Flat Bars)

80 Percent of above allowances per side

Effects Of Common Alloying Elements In Steel

By definition, steel is a combination of iron and carbon. Steel is alloyed with various elements to improve physical properties and to produce special properties such as resistance to corrosion or heat. Specific effects of the addition of such elements are outlined below:

Carbon (C) is the most important constituent of steel. It raises tensile strength, hardness, and resistance to wear and abrasion. It lowers ductility and toughness.

Manganese (Mn) is a deoxidizer and degasifier and reacts with sulfur to improve forgeability. It increases tensile strength, hardness, hardenability and resistance to wear. It decreases tendency toward scaling and distortion. It increases the rate of carbon-penetration in carburizing.

Phosphorus (P) increases strength and hardness and improves machinability. However, it adds marked brittleness or cold-shortness to steel.

Sulfur (S) improves machinability in free-cutting steels, but without sufficient manganese it produces brittleness at red heat. It decreases weldability, impact toughness and ductility.

Silicon (Si) is a deoxidizer and degasifier. It increases tensile and yield strength, hardness, forgeability and magnetic permeability.

Chromium (Cr) increases tensile strength, hardness, hardenability, toughness, resistance to wear and abrasion, resistance to corrosion, and scaling at elevated temperatures.

Nickel (Ni) increases strength and hardness without sacrificing ductility and toughness. It also increases resistance to corrosion and scaling at elevated temperatures when introduced in suitable quantities in high-chromium (stainless) steels.

Molybdenum (Mo) increases strength, hardness, hardenability, and toughness, as well as creep resistance and strength at elevated temperatures. It improves machinability and resistance to corrosion and it intensifies the effects of other alloying elements. In hot-work steels and high speed steels, it increases red-hardness properties.

Tungsten (W) increases strength, wear resistance, hardness and toughness. Tungsten steels have superior hot-working and greater cutting efficiency at elevated temperatures.

Vanadium (V) increases strength, hardness, wear resistance and resistance to shock impact. It retards grain growth, permitting higher quenching temperatures. It also enhances the red-hardness properties of high-speed metal cutting tools.

Cobalt (Co) increases strength and hardness and permits higher quenching temperatures and increases the red hardness of high speed steel. It also intensifies the individual effects of other major elements in more complex steels.

Aluminum (AI) is a deoxidizer and degasifier. It retards grain growth and is used to control austenitic grain size. In nitriding steels it aids in producing a uniformly hard and strong nitrided case when used in amounts 1.00% -1.25%.

Recommendation For Tool Designed To Avoid Failure

Tools and machine parts made from tool steels are often subjected to high stress in operation. These parts also have a certain amount of internal stress as a result of their fabrication and heat treatment. When these stresses, either singly or in combination, exceed the strength limits of the steel, cracking, breaking or warping of the part results. Many fully hardened tool steels, particularly highly alloyed types, can withstand relatively high compressive loading, but only limited tensile loading. Tool engineers should seek to minimize tensile stresses through proper design and use of support tooling so as to permit use of the highest performance die steels on crucial components. When required tooling designs must involve significant tensile stresses, then selection of tougher tool steel with reduced wear resistance, most likely one of the shock resisting grades, is advised.

COMMON ERRORS IN TOOL DESIGN

- · Use of sharp corners; failure to use fillets or adequate radii.
- Presence of non-uniform sections in tooling causing variation in stress distribution in service as well as variable quenching rates during hardening.
- Use of improper clearance between punch and die edges.
- Tool designs involving excessive unit stresses or overloading during operation. Tools should be redesigned to operate at a lower unit stress.

SENSITIVE TOOLING DESIGNS

If sharp corners and variable sections cannot be avoided in the design of a part the use of an air hardening die steel is essential for greatest safety in hardening. Cracking and/or distortion are more apt to occur on such sensitive sections when liquid quenching is employed during hardening.

PROPER TOOL CLEARANCE

Tool clearance is the distance between adjacent punch and die edges. In general the press load required for a given operation decreases as clearance increases, so tools are more highly stressed with a small degree of punch and die clearance. Enlarging clearance from 5 to 10% of stock thickness usually will improve tool life. Although the finish of the sheared edges of parts may improve with small clearance, tool life will be shortened. Breakage due to misalignment may also result.

While acceptable clearance is often 10% of the stock thickness, this subject is debatable since many variables besides stock thickness influence clearance, including stock material, hardness and surface (scale condition and finish) and the required finish on the shear cut.

Our Equipments

25-Ton Electric Arc Furnaces (EAF)

25-Ton Refining Furnaces (LF)

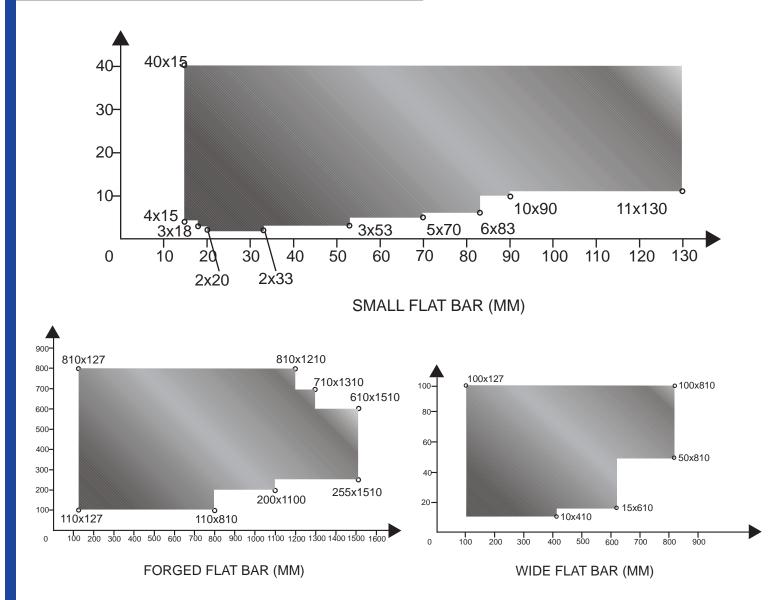
25-Ton Vacuum Furnaces (VOD)

Electro Slag Remelting (ESR)

Heating Furnance

Vacuum Heating Furnace

Our Equipments



Electro Hydraulic Hammers

Hydraulic Press Machine

Production Size Range

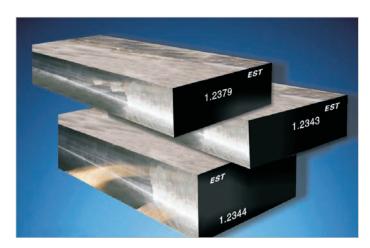
Ø1 - Ø12 cold drawn wire

Ø10 - Ø60 rolled round bar

Ø65 - Ø800 forged round bar

(2-40) x (15-130) small flat bar

(10-100) x (127-810) wide flat bar


(110-810) x (127-1510) forged flat bar (Ø20 - Ø800) pre-hardened steel (round bar)

(10-100) x (15-1010) pre-hardened steel (flat bar)

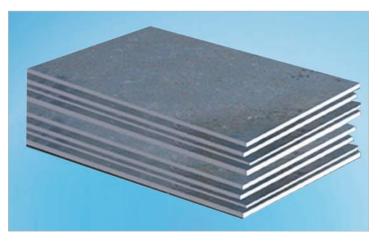
Cold rolled and Hot rolled Sheet

Cold Rolled: (1.0~2.5) x (600~800) x (1500~2000)

Hot Rolled: (2.6~10) x (600~800) x (1500~2000)

Block

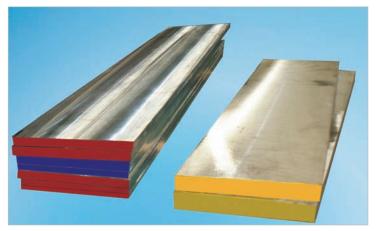
Forged Round Bar



Hot Rolled Flat Bars

Note:

All technical data, suggested procedures, specifications & applications contained in this brochure are for general information only. EST shall not be held responsible for damage caused by any misunderstanding or improper use of the information contained in this brochure. No portion of this brochure may be reproduced without the permission of EST.


Materials

Steel Sheet

Rolled Round Bar

Forged Flat Bars

EST Tool Steel Pvt. Ltd.

EST Tool Steel Pvt. Ltd.

Mumbai Office: Hercules Estate, Level 1, Bank of Baroda Compound, Ashok Nagar, A. C. Road, Kandivali (East), Mumbai - 400 101.India Tel : +91 22 2884 6441 • Fax : +91 22 2884 7014 • E-mail: info@esttoolsteel.com • Website: www.esttoolsteel.com

EST Tool Steel Pvt. Ltd.

Stock Grades 1.2344/H-13, 1.2343/H-11, 1.2581/H-21, 1.2606/H-12, 1.2379/D-2, 1.2080/D-3, 1.2510/O-1, 1.3343/M-2, 1.3243/M-35, 1.3247/M-42, 1.2738/P-20+Ni, 1.2083, 1.2316 1.2550/S-1, 1.2357/S-7, 1.2327/K310, 1.2714/DB-6

Production size range:

Round			
CD	Rolled Peeled	Forged Turned	
2mm-8mm	8.5mm-60mm	65mm-850mm	

Flats		
(Rolled (TXW)	4mm-65mm X 20mm-810mm	
(Forged (TXW)	70mm-500mm X 70mm-1010mm	

Cross Rolled Sheets / Plates	
CR(TXWXL)	1.00mm-2.55mm X 600mm-800mm X 1400mm-2000mm
(HR(TXWXL)	2.60mm-8.00mm X 600mm-800mm X 1400mm-2000mm
Plates (TXWXL)	10.0mm-32.0mm X 600mm-800mm X 1400mm-3000mm

Warehouse Equipped with: Digital hardness testing machine & Ultrasonic testing machine Various size of Vertical & Horizontal bandsaw machines to cut & Deliver as per consumer demand

Exemplar of Tool & Die Materials from China

EST Tool Steel Pvt. Ltd.

Mumbai Office: Hercules Estate, Level 1, Bank of Baroda Compound, Ashok Nagar, A. C. Road, Kandivali (East), Mumbai - 400 101.India Tel : +91 22 2884 6441 • Fax : +91 22 2884 7014 • E-mail: info@esttoolsteel.com • Website: www.esttoolsteel.com

EST Tool Steel Pvt. Ltd.

EST Service Centre in Thane

EST Tool Steel Pvt. Ltd.

Mumbai Office: Hercules Estate, Level 1, Bank of Baroda Compound, Ashok Nagar, A. C. Road, Kandivali (East), Mumbai - 400 101.India Tel : +91 22 2884 6441 • Fax : +91 22 2884 7014 • E-mail: info@esttoolsteel.com • Website: www.esttoolsteel.com